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APPLICATION OF [2,3]WITTIG AND [3,3]CLAISEN REARRANGEMENTS IN STEROID SIDE CHAIN SYNTHESIS. 

A HIGHLY STEREOCONTROLLED ENTRY TO EITHER (22S)- OR (22@-HYDROXY-23-CARBOXYLIC ACID 

K5ichi Mikami, Kazuya Kawamoto, and Takeshi Nakai* 

Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan 

SUMMARY: An efficient approach to either (22S)- or (22Ij)-hydroxy-23-carboxylic 

is described which relies on the stereochemical transmission via [2,3]Wittig 

sigmatropic rearrangement, respectively. 

acid side chain 

or [3,3]Claisen 

Importance of a number of biologically active steroids possessing a hydroxy functionality 

at the C-22 position. such as brassinolides' and ecdysones, 2 has currently facilitated 

synthetic efforts toward the stereocontrolled synthesis of (22s)- and (22i?)-hydroxy steroid 

side chains. 3 Recently we have reported a unified approach to either (22$)- or (22@-hydroxy- 

23-acetylenic side chain via the [2,3]Wittig sigmatropic rearrangement4 In a continuation 

of the study, we now wish to report a new and efficient approach for the stereocontrolled 

synthesis of either (22s)- or (22!)-hydroxy-23-carboxylic acid side chain which relies upon 

the proper use of the [2,3]Wittig and [3.3]Claisen rearrangements as the stereo-directing 

process (Scheme I). The key feature is that the readily available C-16d chirality is 

completely and specifically transmitted to the two new chiral centers at C-20 and C-22 with an -- 

extremely high degree of either threo or erythro selectivity according Q a proper choice of 

the sigmatropic rearranqement employed. 
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The requisite acid (2) was prepared in 76% yield from the readily available alcohol (l_)' 

via etherification with bromoacetic acid using potassium hydride as the base in 25% 

hexamethylphosphoramide-tetrahydrofuran (THF). The benzyloxyacetate (2) was easily prepared 

in 93% yield from 1 via usual acylation with benzyloxyacetyl chloride. 
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The d-face 

was carried out 

THF, -78 oC].7 

[2,3]Wittig process of 2 leading inherently to the "natural" 203/i? chirality6 

under the standard conditions [lithium diisopropylamide (LOA) (2.5 equiv). 

The dianionic [2.3]-rearrangement was found to afford, after methylation 
__ 

(CH2N2), the (PES)-th,reo product tas a single stereoisomer8'Y in 82% isolated yield. The 

(E+threo)-selection in this [2,3]Wittig variant is quite surprising in view of the (E+ 

erythro)-selection reported for the crotyloxyacetic acid system7 (vide infra). On the other 

hand, the ester enolate [3,3]Claisen process" of 2 [(I) LDA (1.5 equiv), THF, -78 'C; (2) 

trimethylsilyl chloride (1.8 equiv), -78-25 'C] was found to afford, after methylation 

(CH2N2). the (22@-erythro product5_as a single stereoisomer12 in 88% isolated yield. The 

Claisqn product (5) is clearly distinguishable by NMR analysis from its 22-epimer (5) derived 

from the [2,3]WitTig product (?) (PhCH2Br. Ag20, Et20).13 The most definitive distinguishing 

features are the signal of the benzylic protons: 8 4.40 and 4.66 (AB. J=l2.0 Hz) for 2 and 

6 4.33 and 4.70 (AB, J=12.0 Hz) for _6_. 
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The (PZS)-threo configuration of 5 was assigned as follows. Thus, the reduction of 2 

(LiAlH4. Et20) followed by @-face hydrogenation (H2. Pd-C, EtOH) afforded the (PPS)-alcohol g 

with E configuration at C-17. The alcohol 12 was, in turn, distinguished by TLC and NMR14 from 

an authentic (ZP@-erythro isomer 2 which was independently prepared from the (22!)-alcohol 

21 5 via the benzylation, ozonolysis, and reduction (NaBH4). 

Of mechanistic interest is that the (E+threo)-selectivity observed in the present 

[2,3]Wittig shift of ?_ is in direct contrast to the (E+erythro)-selectivity reported for the 

genuinely acyclic system (vide supra).7 We suggest that the unusual threo selection may well 

reflect the steroidal situation that the conformer Asuffers a large pseudo-1.3-diaxial 

repulsion of the carboxylate group with the cyclopentane ring, which prevails over the gauche 

repulsion of the carboxylate group with 20-methyl group in B. l6 On the other hand, the 

observed erythro-selectivity of the [3,3]Claisen rearrangeznt of 2 can be reasonably 

understood in terms of the chair-like transition state (C) advanced for the enolate Claisen 

process of glycolate esters?' 
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In conclusion, we have now established an efficient sigmatropic approach to either (22S)- 

or (22R)-hydroxy-23-carboxylic acid side chain from the single alcohol. The rearrangement 

products can undoubtedly serve as key intermediates for the synthesis of many important side- 

chain modified steroids.113 Further work along this line is in progress in our laboratory. 
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